Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural biology of plant defence.

Identifieur interne : 000042 ( Main/Exploration ); précédent : 000041; suivant : 000043

Structural biology of plant defence.

Auteurs : Wen Song [Allemagne] ; Alexander Forderer [Allemagne] ; Dongli Yu [Allemagne] ; Jijie Chai [Allemagne]

Source :

RBID : pubmed:32880948

Abstract

Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.

DOI: 10.1111/nph.16906
PubMed: 32880948


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural biology of plant defence.</title>
<author>
<name sortKey="Song, Wen" sort="Song, Wen" uniqKey="Song W" first="Wen" last="Song">Wen Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forderer, Alexander" sort="Forderer, Alexander" uniqKey="Forderer A" first="Alexander" last="Forderer">Alexander Forderer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Dongli" sort="Yu, Dongli" uniqKey="Yu D" first="Dongli" last="Yu">Dongli Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chai, Jijie" sort="Chai, Jijie" uniqKey="Chai J" first="Jijie" last="Chai">Jijie Chai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32880948</idno>
<idno type="pmid">32880948</idno>
<idno type="doi">10.1111/nph.16906</idno>
<idno type="wicri:Area/Main/Corpus">000120</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000120</idno>
<idno type="wicri:Area/Main/Curation">000120</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000120</idno>
<idno type="wicri:Area/Main/Exploration">000120</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural biology of plant defence.</title>
<author>
<name sortKey="Song, Wen" sort="Song, Wen" uniqKey="Song W" first="Wen" last="Song">Wen Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forderer, Alexander" sort="Forderer, Alexander" uniqKey="Forderer A" first="Alexander" last="Forderer">Alexander Forderer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Dongli" sort="Yu, Dongli" uniqKey="Yu D" first="Dongli" last="Yu">Dongli Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chai, Jijie" sort="Chai, Jijie" uniqKey="Chai J" first="Jijie" last="Chai">Jijie Chai</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institute for Plant Breeding Research, Cologne, 50829</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, University of Cologne, Cologne, 50923</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32880948</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural biology of plant defence.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16906</ELocationID>
<Abstract>
<AbstractText>Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Wen</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9498-2409</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forderer</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Dongli</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chai</LastName>
<ForeName>Jijie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7591-3873</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Alexander von Humboldt Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">effectors</Keyword>
<Keyword MajorTopicYN="N">nucleotide-binding leucine-rich repeat receptors</Keyword>
<Keyword MajorTopicYN="N">pattern recognition receptors</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">structural biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32880948</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A et al. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8: e49956.</Citation>
</Reference>
<Reference>
<Citation>Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences, USA 104: 2531-2536.</Citation>
</Reference>
<Reference>
<Citation>Afzal AJ, da Cunha L, Mackey D. 2011. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. Plant Cell 23: 3798-3811.</Citation>
</Reference>
<Reference>
<Citation>Albert I, Bohm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants 1: 15140.</Citation>
</Reference>
<Reference>
<Citation>Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FL et al. 2012. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathogens 8: e1002752.</Citation>
</Reference>
<Reference>
<Citation>Bai XC, McMullan G, Scheres SH. 2015. How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences 40: 49-57.</Citation>
</Reference>
<Reference>
<Citation>Bange G, Altegoer F. 2019. Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. Communicative & Integrative Biology 12: 31-33.</Citation>
</Reference>
<Reference>
<Citation>Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van de Weyer AL, Zaidem M, Ho WWH, Wang G et al. 2019. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genetics 15: e1008313.</Citation>
</Reference>
<Reference>
<Citation>Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host & Microbe 9: 200-211.</Citation>
</Reference>
<Reference>
<Citation>Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual Review of Phytopathology 48: 419-436.</Citation>
</Reference>
<Reference>
<Citation>Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD. 2012. VLR-based adaptive immunity. Annual Review of Immunology 30: 203-220.</Citation>
</Reference>
<Reference>
<Citation>Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T. 2014. Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology 20: 47-54.</Citation>
</Reference>
<Reference>
<Citation>Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379-406.</Citation>
</Reference>
<Reference>
<Citation>Botos I, Segal DM, Davies DR. 2011. The structural biology of Toll-like receptors. Structure 19: 447-459.</Citation>
</Reference>
<Reference>
<Citation>Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences, USA 107: 9452-9457.</Citation>
</Reference>
<Reference>
<Citation>Buist G, Steen A, Kok J, Kuipers OP. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology 68: 838-847.</Citation>
</Reference>
<Reference>
<Citation>Burch-Smith TM, Dinesh-Kumar SP. 2007. The functions of plant TIR domains. Sci STKE 2007: pe46.</Citation>
</Reference>
<Reference>
<Citation>Buscaill P, Chandrasekar B, Sanguankiattichai N, Kourelis J, Kaschani F, Thomas EL, Morimoto K, Kaiser M, Preston GM, Ichinose Y et al. 2019. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 364: eaav0748.</Citation>
</Reference>
<Reference>
<Citation>Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3: e03766.</Citation>
</Reference>
<Reference>
<Citation>Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN et al. 2016. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences, USA 113: 12856-12861.</Citation>
</Reference>
<Reference>
<Citation>Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. 2019. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytologist 222: 966-980.</Citation>
</Reference>
<Reference>
<Citation>Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO Journal 33: 1941-1959.</Citation>
</Reference>
<Reference>
<Citation>Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25: 1463-1481.</Citation>
</Reference>
<Reference>
<Citation>Chan SL, Mukasa T, Santelli E, Low LY, Pascual J. 2010. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Science 19: 155-161.</Citation>
</Reference>
<Reference>
<Citation>Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M, Fearnhead HO, Gandhi V, Tang DG. 2006. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125: 1333-1346.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Chen J, Li M, Chang M, Xu K, Shang Z, Zhao Y, Palmer I, Zhang Y, McGill J et al. 2017. A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. Cell Host & Microbe 22: 777-788.e777.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X et al. 2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358: 1607-1610.</Citation>
</Reference>
<Reference>
<Citation>Chen T, Liu D, Niu X, Wang J, Qian L, Han L, Liu N, Zhao J, Hong Y, Liu Y. 2017. Antiviral resistance protein Tm-2(2) functions on the plasma membrane. Plant Physiology 173: 2399-2410.</Citation>
</Reference>
<Reference>
<Citation>Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW. 2017. A near-atomic structure of the dark apoptosome provides insight into assembly and activation. Structure 25: 40-52.</Citation>
</Reference>
<Reference>
<Citation>Cheng W, Munkvold KR, Gao H, Mathieu J, Schwizer S, Wang S, Yan YB, Wang J, Martin GB, Chai J. 2011. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III effector. Cell Host & Microbe 10: 616-626.</Citation>
</Reference>
<Reference>
<Citation>Choi HW, Klessig DF. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology 16: 232.</Citation>
</Reference>
<Reference>
<Citation>Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G. 2014. Identification of a plant receptor for extracellular ATP. Science 343: 290-294.</Citation>
</Reference>
<Reference>
<Citation>Chosed R, Tomchick DR, Brautigam CA, Mukherjee S, Negi VS, Machius M, Orth K. 2007. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. Journal of Biological Chemistry 282: 6773-6782.</Citation>
</Reference>
<Reference>
<Citation>Collier SM, Hamel LP, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular Plant-Microbe Interactions 24: 918-931.</Citation>
</Reference>
<Reference>
<Citation>Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16: 537-552.</Citation>
</Reference>
<Reference>
<Citation>Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746-751.</Citation>
</Reference>
<Reference>
<Citation>de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953-955.</Citation>
</Reference>
<Reference>
<Citation>De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ. 2018. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nature Plants 4: 576-585.</Citation>
</Reference>
<Reference>
<Citation>Denance N, Sanchez-Vallet A, Goffner D, Molina A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4: 155.</Citation>
</Reference>
<Reference>
<Citation>Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720-723.</Citation>
</Reference>
<Reference>
<Citation>Diebolder CA, Halff EF, Koster AJ, Huizinga EG, Koning RI. 2015. Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation. Structure 23: 2349-2357.</Citation>
</Reference>
<Reference>
<Citation>Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478: 395-398.</Citation>
</Reference>
<Reference>
<Citation>Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences, USA 103: 8888-8893.</Citation>
</Reference>
<Reference>
<Citation>Dong J, Xiao F, Fan F, Gu L, Cang H, Martin GB, Chai J. 2009. Crystal structure of the complex between Pseudomonas effector AvrPtoB and the tomato Pto kinase reveals both a shared and a unique interface compared with AvrPto-Pto. Plant Cell 21: 1846-1859.</Citation>
</Reference>
<Reference>
<Citation>Donnelly MA, Steiner TS. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. Journal of Biological Chemistry 277: 40456-40461.</Citation>
</Reference>
<Reference>
<Citation>Engelhardt S, Boevink PC, Armstrong MR, Ramos MB, Hein I, Birch PR. 2012. Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response. Plant Cell 24: 5142-5158.</Citation>
</Reference>
<Reference>
<Citation>Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou JM. 2012. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485: 114-118.</Citation>
</Reference>
<Reference>
<Citation>Fenyk S, Dixon CH, Gittens WH, Townsend PD, Sharples GJ, Palsson LO, Takken FL, Cann MJ. 2016. The tomato nucleotide-binding leucine-rich repeat immune receptor I-2 couples DNA-binding to nucleotide-binding domain nucleotide exchange. Journal of Biological Chemistry 291: 1137-1147.</Citation>
</Reference>
<Reference>
<Citation>Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FKK, Knight MR, Sharples GJ et al. 2015. The potato nucleotide-binding leucine-rich repeat (NLR) immune receptor Rx1 is a pathogen-dependent DNA-deforming protein. Journal of Biological Chemistry 290: 24945-24960.</Citation>
</Reference>
<Reference>
<Citation>Fu ZQ, Dong X. 2013. Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64: 839-863.</Citation>
</Reference>
<Reference>
<Citation>Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X et al. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host & Microbe 6: 34-44.</Citation>
</Reference>
<Reference>
<Citation>Gao Z, Chung EH, Eitas TK, Dangl JL. 2011. Plant intracellular innate immune receptor resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proceedings of the National Academy of Sciences, USA 108: 7619-7624.</Citation>
</Reference>
<Reference>
<Citation>Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP. 2009. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Current Biology 19: 423-429.</Citation>
</Reference>
<Reference>
<Citation>Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S. 2008. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Current Biology 18: 1824-1832.</Citation>
</Reference>
<Reference>
<Citation>Gomez-Gomez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1011.</Citation>
</Reference>
<Reference>
<Citation>Grund E, Tremousaygue D, Deslandes L. 2019. Plant NLRs with integrated domains: unity makes strength. Plant Physiology 179: 1227-1235.</Citation>
</Reference>
<Reference>
<Citation>Guo L, Zhang Y, Ma M, Liu Q, Zhang Y, Peng Y, Liu J. 2018. Crystallization of the rice immune receptor RGA5A_S with the rice blast fungus effector AVR1-CO39 prepared via mixture and tandem strategies. Acta Crystallography F: Structural Biology Communications 74(Pt 4): 262-267.</Citation>
</Reference>
<Reference>
<Citation>Gust AA, Felix G. 2014. Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology 21: 104-111.</Citation>
</Reference>
<Reference>
<Citation>Halter T, Imkampe J, Blaum BS, Stehle T, Kemmerling B. 2014a. BIR2 affects complex formation of BAK1 with ligand binding receptors in plant defense. Plant Signaling & Behavior 9: e28944.</Citation>
</Reference>
<Reference>
<Citation>Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S, Bucherl C, Kiefer C, Stahl M, Chinchilla D, Wang X et al. 2014b. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Current Biology 24: 134-143.</Citation>
</Reference>
<Reference>
<Citation>Hammond-Kosack KE, Jones JD. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791.</Citation>
</Reference>
<Reference>
<Citation>Han BW, Herrin BR, Cooper MD, Wilson IA. 2008. Antigen recognition by variable lymphocyte receptors. Science 321: 1834-1837.</Citation>
</Reference>
<Reference>
<Citation>Han X, Altegoer F, Steinchen W, Binnebesel L, Schuhmacher J, Glatter T, Giammarinaro PI, Djamei A, Rensing SA, Reissmann S et al. 2019. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature 565: 650-653.</Citation>
</Reference>
<Reference>
<Citation>Han Z, Sun Y, Chai J. 2014. Structural insight into the activation of plant receptor kinases. Current Opinion in Plant Biology 20: 55-63.</Citation>
</Reference>
<Reference>
<Citation>Hander T, Fernandez-Fernandez AD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P et al. 2019. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science 363: eaar7486.</Citation>
</Reference>
<Reference>
<Citation>Hao W, Collier SM, Moffett P, Chai J. 2013. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). Journal of Biological Chemistry 288: 35868-35876.</Citation>
</Reference>
<Reference>
<Citation>Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, USA 111: E404-413.</Citation>
</Reference>
<Reference>
<Citation>Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103.</Citation>
</Reference>
<Reference>
<Citation>Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE. 2011. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334: 1401-1404.</Citation>
</Reference>
<Reference>
<Citation>Hohmann U, Nicolet J, Moretti A, Hothorn LA, Hothorn M. 2018. The SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling. Nature Plants 4: 345-351.</Citation>
</Reference>
<Reference>
<Citation>Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX et al. 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365: 793-799.</Citation>
</Reference>
<Reference>
<Citation>Hou S, Wang X, Chen D, Yang X, Wang M, Turra D, Di Pietro A, Zhang W. 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathogens 10: e1004331.</Citation>
</Reference>
<Reference>
<Citation>Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341: 172-175.</Citation>
</Reference>
<Reference>
<Citation>Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350: 399-404.</Citation>
</Reference>
<Reference>
<Citation>Huang Y, Cui Y, Hou X, Huang T. 2018. The AtMC4 regulates the stem cell homeostasis in Arabidopsis by catalyzing the cleavage of AtLa1 protein in response to environmental hazards. Plant Science 266: 64-75.</Citation>
</Reference>
<Reference>
<Citation>Huffaker A, Pearce G, Ryan CA. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences, USA 103: 10098-10103.</Citation>
</Reference>
<Reference>
<Citation>Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG. 2017. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathogens 13: e1006376.</Citation>
</Reference>
<Reference>
<Citation>Hurlburt NK, Chen LH, Stergiopoulos I, Fisher AJ. 2018. Structure of the Cladosporium fulvum Avr4 effector in complex with (GlcNAc)6 reveals the ligand-binding mechanism and uncouples its intrinsic function from recognition by the Cf-4 resistance protein. PLoS Pathogens 14: e1007263.</Citation>
</Reference>
<Reference>
<Citation>Iyer LM, Leipe DD, Koonin EV, Aravind L. 2004. Evolutionary history and higher order classification of AAA+ ATPases. Journal of Structural Biology 146: 11-31.</Citation>
</Reference>
<Reference>
<Citation>Jacob F, Vernaldi S, Maekawa T. 2013. Evolution and conservation of plant NLR functions. Frontiers in Immunology 4: 297.</Citation>
</Reference>
<Reference>
<Citation>Jamieson PA, Shan L, He P. 2018. Plant cell surface molecular cypher: receptor-like proteins and their roles in immunity and development. Plant Science 274: 242-251.</Citation>
</Reference>
<Reference>
<Citation>Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. 2006. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-226.</Citation>
</Reference>
<Reference>
<Citation>Jia Y, Loh YT, Zhou J, Martin GB. 1997. Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases. Plant Cell 9: 61-73.</Citation>
</Reference>
<Reference>
<Citation>Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. 2019. Help wanted: helper NLRs and plant immune responses. Current Opinion in Plant Biology 50: 82-94.</Citation>
</Reference>
<Reference>
<Citation>Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, USA 103: 11086-11091.</Citation>
</Reference>
<Reference>
<Citation>Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373-384.</Citation>
</Reference>
<Reference>
<Citation>Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. 2005. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proceedings of the National Academy of Sciences, USA 102: 6496-6501.</Citation>
</Reference>
<Reference>
<Citation>Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P. 2009. Pectin activation of MAP kinase and gene expression is WAK2 dependent. The Plant Journal 60: 974-982.</Citation>
</Reference>
<Reference>
<Citation>Kutschera A, Dawid C, Gisch N, Schmid C, Raasch L, Gerster T, Schaffer M, Smakowska-Luzan E, Belkhadir Y, Vlot AC et al. 2019. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364: 178-181.</Citation>
</Reference>
<Reference>
<Citation>Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, von Born P, Bautor J, Guarneri N, Rzemieniewski J, Stuttmann J et al. 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell 31: 2430-2455.</Citation>
</Reference>
<Reference>
<Citation>Larquet E, Schreiber V, Boisset N, Richet E. 2004. Oligomeric assemblies of the Escherichia coli MalT transcriptional activator revealed by cryo-electron microscopy and image processing. Journal of Molecular Biology 343: 1159-1169.</Citation>
</Reference>
<Reference>
<Citation>Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161: 1074-1088.</Citation>
</Reference>
<Reference>
<Citation>Leipe DD, Koonin EV, Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Journal of Molecular Biology 343: 1-28.</Citation>
</Reference>
<Reference>
<Citation>Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141: 1117-1134.</Citation>
</Reference>
<Reference>
<Citation>Lenarcic T, Albert I, Bohm H, Hodnik V, Pirc K, Zavec AB, Podobnik M, Pahovnik D, Zagar E, Pruitt R et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358: 1431-1434.</Citation>
</Reference>
<Reference>
<Citation>Li L, Habring A, Wang K, Weigel D. 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host & Microbe 27: 405-417. e406.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Fu TM, Lu A, Witt K, Ruan J, Shen C, Wu H. 2018. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proceedings of the National Academy of Sciences, USA 115: 10845-10852.</Citation>
</Reference>
<Reference>
<Citation>Liebrand TW, van den Burg HA, Joosten MH. 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends in Plant Science 19: 123-132.</Citation>
</Reference>
<Reference>
<Citation>Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. 2016. Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24: 1192-1200.</Citation>
</Reference>
<Reference>
<Citation>Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336: 1160-1164.</Citation>
</Reference>
<Reference>
<Citation>Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng SC, Maier CS, Wolpert TJ. 2012. Tricking the guard: exploiting plant defense for disease susceptibility. Science 338: 659-662.</Citation>
</Reference>
<Reference>
<Citation>Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156: 1193-1206.</Citation>
</Reference>
<Reference>
<Citation>Ma C, Liu Y, Bai B, Han Z, Tang J, Zhang H, Yaghmaiean H, Zhang Y, Chai J. 2017. Structural basis for BIR1-mediated negative regulation of plant immunity. Cell Research 27: 1521-1524.</Citation>
</Reference>
<Reference>
<Citation>Ma X, Xu G, He P, Shan L. 2016. SERKing coreceptors for receptors. Trends in Plant Science 21: 1017-1033.</Citation>
</Reference>
<Reference>
<Citation>Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T. 2016. Crystal structure of NOD2 and its implications in human disease. Nature Communications 7: 11813.</Citation>
</Reference>
<Reference>
<Citation>Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE et al. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host & Microbe 9: 187-199.</Citation>
</Reference>
<Reference>
<Citation>Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719.</Citation>
</Reference>
<Reference>
<Citation>Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4: e08709.</Citation>
</Reference>
<Reference>
<Citation>Mathieu J, Schwizer S, Martin GB. 2014. Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity. PLoS Pathogens 10: e1004227.</Citation>
</Reference>
<Reference>
<Citation>Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834.</Citation>
</Reference>
<Reference>
<Citation>Meyers BC, Morgante M, Michelmore RW. 2002. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. The Plant Journal 32: 77-92.</Citation>
</Reference>
<Reference>
<Citation>Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 19613-19618.</Citation>
</Reference>
<Reference>
<Citation>Moffett P, Farnham G, Peart J, Baulcombe DC. 2002. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO Journal 21: 4511-4519.</Citation>
</Reference>
<Reference>
<Citation>Mucyn TS, Clemente A, Andriotis VM, Balmuth AL, Oldroyd GE, Staskawicz BJ, Rathjen JP. 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18: 2792-2806.</Citation>
</Reference>
<Reference>
<Citation>Nandety RS, Caplan JL, Cavanaugh K, Perroud B, Wroblewski T, Michelmore RW, Meyers BC. 2013. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiology 162: 1459-1472.</Citation>
</Reference>
<Reference>
<Citation>Nanson JD, Kobe B, Ve T. 2019. Death, TIR, and RHIM: self-assembling domains involved in innate immunity and cell-death signaling. Journal of Leukocyte Biology 105: 363-375.</Citation>
</Reference>
<Reference>
<Citation>Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL, Machius M, Nimchuk ZL, Yang L, Chung EH, El Kasmi F et al. 2017. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. Proceedings of the National Academy of Sciences, USA 114: E2053-E2062.</Citation>
</Reference>
<Reference>
<Citation>Noman A, Aqeel M, Lou Y. 2019. PRRs and NB-LRRs: from signal perception to activation of plant innate immunity. International Journal of Molecular Sciences 20: 1882.</Citation>
</Reference>
<Reference>
<Citation>Ntoukakis V, Mucyn TS, Gimenez-Ibanez S, Chapman HC, Gutierrez JR, Balmuth AL, Jones AM, Rathjen JP. 2009. Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 324: 784-787.</Citation>
</Reference>
<Reference>
<Citation>Oh MH, Wu X, Clouse SD, Huber SC. 2011. Functional importance of BAK1 tyrosine phosphorylation in vivo. Plant Signaling & Behavior 6: 400-405.</Citation>
</Reference>
<Reference>
<Citation>Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU et al. 2009. A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciences, USA 106: 10359-10364.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895-897.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Yamaguchi Y, Munske G, Ryan CA. 2008. Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29: 2083-2089.</Citation>
</Reference>
<Reference>
<Citation>Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC. 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology 15: 968-973.</Citation>
</Reference>
<Reference>
<Citation>Peng Y, van Wersch R, Zhang Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Molecular Plant-Microbe Interactions 31: 403-409.</Citation>
</Reference>
<Reference>
<Citation>Pitsili E, Phukan UJ, Coll NS. 2020. Cell death in plant immunity. Cold Spring Harbor Perspectives in Biology 12: a036483.</Citation>
</Reference>
<Reference>
<Citation>Postma J, Liebrand TW, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten MH, Robatzek S. 2016. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytologist 210: 627-642.</Citation>
</Reference>
<Reference>
<Citation>Pusztahelyi T. 2018. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 9: 189-201.</Citation>
</Reference>
<Reference>
<Citation>Qi D, DeYoung BJ, Innes RW. 2012. Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiology 158: 1819-1832.</Citation>
</Reference>
<Reference>
<Citation>Qi S, Pang Y, Hu Q, Liu Q, Li H, Zhou Y, He T, Liang Q, Liu Y, Yuan X et al. 2010. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell 141: 446-457.</Citation>
</Reference>
<Reference>
<Citation>Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ. 2018. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proceedings of the National Academy of Sciences, USA 115: E10979-E10987.</Citation>
</Reference>
<Reference>
<Citation>Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel YA, Sanchez-Carballo PM, Zahringer U, Huckelhoven R, Lee J et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology 16: 426-433.</Citation>
</Reference>
<Reference>
<Citation>Reubold TF, Wohlgemuth S, Eschenburg S. 2009. A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. Journal of Biological Chemistry 284: 32717-32724.</Citation>
</Reference>
<Reference>
<Citation>Rojko N, Dalla Serra M, Macek P, Anderluh G. 2016. Pore formation by actinoporins, cytolysins from sea anemones. Biochimica et Biophysica Acta 1858: 446-456.</Citation>
</Reference>
<Reference>
<Citation>Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB. 2007. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448: 370-374.</Citation>
</Reference>
<Reference>
<Citation>Ruan J, Xia S, Liu X, Lieberman J, Wu H. 2018. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557: 62-67.</Citation>
</Reference>
<Reference>
<Citation>Rubartelli A, Lotze MT. 2007. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends in Immunology 28: 429-436.</Citation>
</Reference>
<Reference>
<Citation>Sacco MA, Mansoor S, Moffett P. 2007. A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. The Plant Journal 52: 82-93.</Citation>
</Reference>
<Reference>
<Citation>Sanchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ, Thomma BP, Mesters JR. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2: e00790.</Citation>
</Reference>
<Reference>
<Citation>Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. 2016. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 5: e15075.</Citation>
</Reference>
<Reference>
<Citation>Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV. 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biology 14: 8.</Citation>
</Reference>
<Reference>
<Citation>Saur IM, Bauer S, Kracher B, Lu X, Franzeskakis L, Muller MC, Sabelleck B, Kummel F, Panstruga R, Maekawa T et al. 2019. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. eLife 8: e44471.</Citation>
</Reference>
<Reference>
<Citation>Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. 2012. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biology 10: e1001451.</Citation>
</Reference>
<Reference>
<Citation>Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host & Microbe 4: 17-27.</Citation>
</Reference>
<Reference>
<Citation>Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends in Biochemical Sciences 42: 245-254.</Citation>
</Reference>
<Reference>
<Citation>Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal 64: 204-214.</Citation>
</Reference>
<Reference>
<Citation>Shine MB, Xiao X, Kachroo P, Kachroo A. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science 279: 81-86.</Citation>
</Reference>
<Reference>
<Citation>Song W, Han Z, Wang J, Lin G, Chai J. 2017. Structural insights into ligand recognition and activation of plant receptor kinases. Current Opinion in Structural Biology 43: 18-27.</Citation>
</Reference>
<Reference>
<Citation>Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W et al. 2016. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Research 26: 674-685.</Citation>
</Reference>
<Reference>
<Citation>Steele JFC, Hughes RK, Banfield MJ. 2019. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS ONE 14: e0221226.</Citation>
</Reference>
<Reference>
<Citation>Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. 2014. A plug release mechanism for membrane permeation by MLKL. Structure 22: 1489-1500.</Citation>
</Reference>
<Reference>
<Citation>Sukarta OCA, Slootweg EJ, Goverse A. 2016. Structure-informed insights for NLR functioning in plant immunity. Seminars in Cell & Developmental Biology 56: 134-149.</Citation>
</Reference>
<Reference>
<Citation>Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342: 624-628.</Citation>
</Reference>
<Reference>
<Citation>Swiderski MR, Birker D, Jones JD. 2009. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Molecular Plant-Microbe Interactions 22: 157-165.</Citation>
</Reference>
<Reference>
<Citation>Tafoya S, Liu S, Castillo JP, Atz R, Morais MC, Grimes S, Jardine PJ, Bustamante C. 2018. Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase. Proceedings of the National Academy of Sciences, USA 115: 7961-7966.</Citation>
</Reference>
<Reference>
<Citation>Takemoto D, Rafiqi M, Hurley U, Lawrence GJ, Bernoux M, Hardham AR, Ellis JG, Dodds PN, Jones DA. 2012. N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance. Molecular Plant-Microbe Interactions 25: 379-392.</Citation>
</Reference>
<Reference>
<Citation>Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ. 2002. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939.</Citation>
</Reference>
<Reference>
<Citation>Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL. 2006. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiology 140: 1233-1245.</Citation>
</Reference>
<Reference>
<Citation>Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J. 2015. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research 25: 110-120.</Citation>
</Reference>
<Reference>
<Citation>Tenthorey JL, Haloupek N, Lopez-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacon P, Nogales E et al. 2017. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358: 888-893.</Citation>
</Reference>
<Reference>
<Citation>Torres MA, Jones JD, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology 141: 373-378.</Citation>
</Reference>
<Reference>
<Citation>Tran DTN, Chung EH, Habring-Muller A, Demar M, Schwab R, Dangl JL, Weigel D, Chae E. 2017. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Current Biology 27: 1148-1160.</Citation>
</Reference>
<Reference>
<Citation>Trujillo M, Shirasu K. 2010. Ubiquitination in plant immunity. Current Opinion in Plant Biology 13: 402-408.</Citation>
</Reference>
<Reference>
<Citation>van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJ, Thomma BP. 2007. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions 20: 1092-1101.</Citation>
</Reference>
<Reference>
<Citation>van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL. 2008. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany 59: 1383-1397.</Citation>
</Reference>
<Reference>
<Citation>Ve T, Vajjhala PR, Hedger A, Croll T, DiMaio F, Horsefield S, Yu X, Lavrencic P, Hassan Z, Morgan GP et al. 2017. Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nature Structural & Molecular Biology 24: 743-751.</Citation>
</Reference>
<Reference>
<Citation>Wan J, Zhang XC, Stacey G. 2008. Chitin signaling and plant disease resistance. Plant Signaling & Behavior 3: 831-833.</Citation>
</Reference>
<Reference>
<Citation>Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, Osborne Nishimura E, DiAntonio A, Milbrandt J, Dangl JL et al. 2019. TIR domains of plant immune receptors are NAD(+)-cleaving enzymes that promote cell death. Science 365: 799-803.</Citation>
</Reference>
<Reference>
<Citation>Wan WL, Frohlich K, Pruitt RN, Nurnberger T, Zhang L. 2019. Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology 50: 18-28.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J. 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW et al. 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364: eaav5868.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Liu N, Gao C, Rui L, Tang D. 2019. The Pseudomonas syringae effector AvrPtoB associates with and ubiquitinates Arabidopsis exocyst subunit EXO70B1. Frontiers in Plant Science 10: 1027.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou JM. 2010. A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22: 2033-2044.</Citation>
</Reference>
<Reference>
<Citation>Wendler P, Ciniawsky S, Kock M, Kube S. 2012. Structure and function of the AAA+ nucleotide binding pocket. Biochimica et Biophysica Acta 1823: 2-14.</Citation>
</Reference>
<Reference>
<Citation>Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344: 299-303.</Citation>
</Reference>
<Reference>
<Citation>Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA. 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Molecular Plant-Microbe Interactions 24: 897-906.</Citation>
</Reference>
<Reference>
<Citation>Williams SJ, Yin L, Foley G, Casey LW, Outram MA, Ericsson DJ, Lu J, Boden M, Dry IB, Kobe B. 2016. Structure and function of the TIR domain from the grape NLR protein RPV1. Frontiers in Plant Science 7: 1850.</Citation>
</Reference>
<Reference>
<Citation>Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, USA 108: 19824-19829.</Citation>
</Reference>
<Reference>
<Citation>Xiao F, He P, Abramovitch RB, Dawson JE, Nicholson LK, Sheen J, Martin GB. 2007. The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. The Plant Journal 52: 595-614.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA. 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22: 508-522.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi Y, Pearce G, Ryan CA. 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proceedings of the National Academy of Sciences, USA 103: 10104-10109.</Citation>
</Reference>
<Reference>
<Citation>Yang X, Yang F, Wang W, Lin G, Hu Z, Han Z, Qi Y, Zhang L, Wang J, Sui SF et al. 2018. Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Research 28: 35-47.</Citation>
</Reference>
<Reference>
<Citation>Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science 335: 859-864.</Citation>
</Reference>
<Reference>
<Citation>Zeng L, Velasquez AC, Munkvold KR, Zhang J, Martin GB. 2012. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. The Plant Journal 69: 92-103.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Lin X, Han Z, Qu LJ, Chai J. 2016. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Research 26: 543-555.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host & Microbe 7: 290-301.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J et al. 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe 1: 175-185.</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350: 404-409.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T, Casey LW, Raaymakers TM, Hu J, Croll TI, Schreiber KJ et al. 2017. Multiple functional self-association interfaces in plant TIR domains. Proceedings of the National Academy of Sciences, USA 114: E2046-E2052.</Citation>
</Reference>
<Reference>
<Citation>Zhou JM, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell 181: 978-989.</Citation>
</Reference>
<Reference>
<Citation>Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y. 2015. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes & Development 29: 2349-2361.</Citation>
</Reference>
<Reference>
<Citation>Zipfel C. 2014. Plant pattern-recognition receptors. Trends in Immunology 35: 345-351.</Citation>
</Reference>
<Reference>
<Citation>Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125: 749-760.</Citation>
</Reference>
<Reference>
<Citation>Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Cologne</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Song, Wen" sort="Song, Wen" uniqKey="Song W" first="Wen" last="Song">Wen Song</name>
</region>
<name sortKey="Chai, Jijie" sort="Chai, Jijie" uniqKey="Chai J" first="Jijie" last="Chai">Jijie Chai</name>
<name sortKey="Chai, Jijie" sort="Chai, Jijie" uniqKey="Chai J" first="Jijie" last="Chai">Jijie Chai</name>
<name sortKey="Forderer, Alexander" sort="Forderer, Alexander" uniqKey="Forderer A" first="Alexander" last="Forderer">Alexander Forderer</name>
<name sortKey="Forderer, Alexander" sort="Forderer, Alexander" uniqKey="Forderer A" first="Alexander" last="Forderer">Alexander Forderer</name>
<name sortKey="Song, Wen" sort="Song, Wen" uniqKey="Song W" first="Wen" last="Song">Wen Song</name>
<name sortKey="Yu, Dongli" sort="Yu, Dongli" uniqKey="Yu D" first="Dongli" last="Yu">Dongli Yu</name>
<name sortKey="Yu, Dongli" sort="Yu, Dongli" uniqKey="Yu D" first="Dongli" last="Yu">Dongli Yu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32880948
   |texte=   Structural biology of plant defence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32880948" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020